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A class of wave propagation algorithms for three-dimensional conservation laws
and other hyperbolic systems is developed. These unsplit finite-volume methods are
based on solving one-dimensional Riemann problems at the cell interfaces and ap-
plying flux-limiter functions to suppress oscillations arising from second-derivative
terms. Waves emanating from the Riemann problem are further split by solving
Riemann problems in the transverse directions to model cross-derivative terms. With
proper upwinding, a method that is stable for Courant numbers up to 1 can be de-
veloped. The stability theory for three-dimensional algorithms is found to be more
subtle than in two dimensions and is studied in detail. In particular we find that some
methods which are unconditionally unstable when no limiter is applied are (appar-
ently) stabilized by the limiter function and produce good looking results. Several
computations using the Euler equations are presented including blast wave and com-
plex shock/vorticity problems. These algorithms are implemented igith@PACK
software, which is freely available. (© 2000 Academic Press

Key Words:finite-volume methods; high resolution; wave propagation; three
dimensions; Euler equations; software.

1. INTRODUCTION

This paper describes an unsplit method for solving three-dimensional conservation |:
i.e., equations of the form

g + f(Dx +9(@y +h(@),=0, 1)
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THREE-DIMENSIONAL CONSERVATION LAWS 127

whereg € R™ is the conserved quantity. It is well known that these equations may deve
shock waves or contain other discontinuities. The existence of regions where the solt
changes abruptly places special requirements on the numerical methods to be used.
tionally, simple numerical schemes suffer from dissipative and dispersive effects, resul
in inappropriate representation of these discontinuities. This is reflected in the solutio
spurious oscillations or excessive smearing in the vicinity of the discontinuity. Since the
currence of discontinuous waves is a significant feature of hyperbolic problems, much e
has been made to construct robust methods producing sharp and monotone represent

One special initial value problem is of major importance, both in its own and in t
development of efficient numerical methods. This is the Riemann problem which cons
of the equatior; + f (q)x = 0 together with the initial condition

_Ja Xx<0
ax0={? %0 @

whereq, andg, are constants. With certain assumptions on the flux fundtidhis always
possible, in principle, to solve the Riemann problem if the statesidq, are sufficiently
“close”; see [22, 39]. The solution consists of waves traveling with finite velocities. The
waves may either be discontinuous waves like shock waves or smooth rarefaction w:
The similarity solution of this initial-value problem depends on the rafit Due to this
simplification, it is possible to solve any scalar problem. Also for many important nonline
systems, the Riemann problem can be solved, e.g., the Euler equations of gas dyn:
[16, 39]. The procedure for constructing the solution of a Riemann problem will be cal
a Riemann solver.

The history of the development of numerical methods for hyperbolic conservation law
long and rich. The wave propagation method described in this paper falls into the traditio
methods based on solving Riemann problems, which originated with the work of Godu
[15]. For a general overview of such methods and many references, see, for exan
[14, 18, 25, 44].

A common approach to solving multidimensional hyperbolic problems is to apy
dimensional splitting; see [9, 41]. The idea is to iterate on one-dimensional proble
The popularity of these algorithms is due to their simplicity and the fact that they p
duce surprisingly good results. Any one-dimensional scheme is easily extended to
multidimensional case using this approach. However, it is well known that dimensio
splitting has several disadvantages. Since the strategy only involves flow in the coc
nate directions, the solution may be affected by the grid orientation. The implemel
tion of boundary conditions and adaptive refinement may also be complicated using
strategy.

In unsplit methods, information is propagated in a multidimensional way. The uns
scheme to be presented was first described in an unfinished form in [19] and later in a
close to the presentin the thesis of the first author [21]. One-dimensional Riemann prob
are solved at the interfaces. Limiter functions are applied to suppress spurious oscilla
arising from second-derivative terms. The left-going and right-going waves are split i
parts propagating in the transverse direction by solving Riemann problems in coordil
directions tangential to the interfaces. This models cross-derivative terms necessary fo
taining both a stable and a formally second-order scheme. The scheme extends the apy
used for two space dimensions [26, 28] and the advection scheme for three-dimens
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problems considered in [27]. The 3D wave propagation scheme is implemented in For
and is included in the software packagieAWPACK (Conservation LAW PACKage) [29].
This package includes routines for solving a wide range of hyperbolic problems and c
tains a selection of different Riemann solvers, boundary conditionSIgtgPACK is freely
available on the Web [29].

This method is similar in spirit to other multidimensional methods using one-dimensio
Riemann problems at the cell interfaces; see [2, 5, 7, 24, 31, 34, 37, 38, 45]. Howe
an algorithmic difference is that the Riemann problem is based on the solution val
at the beginning of the time step, and that cross-derivative terms are implemented
to the transverse propagation of the emanating waves. In other methods, such as tt
Colella [7], the states involved in the Riemann problem are based on an interpola
in which the transverse terms based on characteristic decompositions in the trans
directions are included before the Riemann problem is solved. A disadvantage to n
of these multidimensional approaches (including ours) is that a large number of Riem
problems (or characteristic decompositions) must generally be solved in each grid ce
each time step. For our algorithms the exact number depends on how many transverse
are included, as described in Section 2.5. For nonlinear problems most of these Rien
solutions are simpler and cheaper than the basic Riemann solver applied normal to
grid edge, as discussed in that section.

We should note that for many problems dimensional splitting can be used succ
fully. This requires only solving the normal Riemann problem and applying strictly on
dimensional high-resolution methods. The cross-derivative terms are modeled automati
by the fractional step nature of the algorithm. Dimensional splitting is one of the optic
provided inCLAWPACK and typically runs about twice as fast as the full multidimensional a
gorithm described here on the Euler equations. Conversely, however, the methods desc
here require only about twice as much time on a given grid and do yield better result
some situations. Since in three space dimensions refining the grid by a factor of 2 reqt
16 times as much work, there are definite advantages to using the best possible algo
on a given grid, even if the cost is slightly higher.

In the wave propagation algorithm, it is not necessary to evaluate the flux functic
explicitly. As a consequence, the algorithm may as well be applied on systems in n
conservative form. IrCLAWPACK, the scheme is implemented so that it is applicable t
quasilinear problems having the form

K(X7 yv Z)Qt + A(q1 X’ y5 27 t)qX + B(qa X’ y’ 27 t)qy + C(q’ X’ y’ 27 t)qZ
=W(Qq, K X,Y,z1). 3)

Recent work on acoustic and elastic waves in heterogeneous media[11, 13] shows that
methods can be extremely useful even for linear problems since the solution of the Rien
problem accurately models the transmission and reflection of waves at a material inter
The three-dimensional algorithm developed here should be applicable to problems of
type as well. In this paper, we focus on the conservation law (2) and refer to [28] fo
discussion of how to applgLAWPACK routines to this more general class of problems. Ii
Section 2, the wave propagation scheme is derived. Inthe process of deriving this schem
one-dimensional and two-dimensional versions are briefly reviewed. In Section 3, numel
results are given for three test problems involving the Euler equations: a radially symme
smooth solution where second-order accuracy can be verified, an initially spherical st
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wave expanding in a slab between two parallel walls, and finally a fully 3D problem
which shock waves are used to produce vorticity.

Stability is the topic of Section 4. Avon Neumann approach is used to shed some ligh
the question of stability for the wave propagation scheme and how the use of limiters aff
this property. With proper upwinding, a method that is stable for Courant numbers up
can be developed. However, the stability theory for three-dimensional algorithms is fo
to be more subtle than that for two dimensions and we study this in detail. In particular,
find that some methods which are unconditionally unstable when no limiter is applied
(apparently) stabilized by the limiter function and produce good looking results.

2. WAVE PROPAGATION ALGORITHMS

In this section we will derive the three-dimensional wave propagation scheme. This:
generalize the schemes for two-dimensional systems described in [28] and scalar t
dimensional problems from [27]. We give a brief review of the one-dimensional wa
propagation method, but in order to avoid substantial repetition we assume that the re
is familiar with the multidimensional notation and the ideas of [27, 28].

We assume that the three-dimensional system of conservation laws (1) is hyperb
i.e., that the matrixxf’(q) + 89'(q) + yh’(q) has real eigenvalues and a complete s¢
of eigenvectors for any real, 8, andy with |«| + |8] + |y| > 0. Define a regular grid
with constant spacing\x, Ay, andAz. Let Cjjc denote the cell)j, Xi11] x [Y;j, Yj+1] %
[z«, zZ«+1], wherex; = i AX, etc. Likewise letAt denote the time step, and lgt= nAt the
time levels.

To derive the numerical scheme we primarily consider two linear problems, namely
scalar equation

G + UGk +vQy +wq, =0 (4)
and the linear system
O + Agx + Bagy +Cq, = 0. (5)

The essential ideas and difficulties in three-dimensional wave propagation appear alr
with these linear problems. The extension to nonlinear systems is then immediate follov
the approach used already in two space dimensions in [28]. Unless otherwise noted, we
often assume that the advection velocities are positive as a specific example.

The wave propagation schemes will be written in the same form as in that paper,

~ At~ ~ At~ ~
Qijk = Qijk + Ajjy — oy ik = Figo) = A—y(Gi,H—l,k - Gijk)

At -~ ~
_E(Hij,kJrl_ Hijk), (6)

where Q represents the numerical solution at the time $tep. The termAi“jF,’( includes

the donor-cell part, i.e., a (one-dimensional) first-order upwind scheme applied coordin
wise. TheF, G, andH terms take care of the approximations of the higher order derivative
including cross-derivative terms. The flux functions will not be needed explicitly, and a
consequence, the scheme can easily be applied to a wider range of hyperbolic proble
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2.1. Schemes for Linear 1D Problems

Essential features of the wave propagation schemes are the so-called incremen
correction waves. The former refers to the constant state waves given from the solutic
the (approximate) Riemann problem, while the correction waves are piecewise linear wi
used for obtaining second-order accuracy. These features are best illustrated by usin
simple scalar advection equation

g +ug=0, u>0. @)

The conservative scheme for one-dimensional problems reads

— At
Qi =Qi —B(le—ﬁ), (8)
where the numerical fluk; approximates the exact flux; i.e.,

1 tha f d
F~— i .
1 At tn (q(XI’ )) t

As in standard second-order Godunov methods [25, 48], assume that the solution at
t, is piecewise linear. The solution at tinyg ; is obtained by simply shifting the profile
a distanceuAt. The situation close to the interface then looks as depicted in Fig. 1.
Since the problem is linear, the wave entering €glinay be split into a piecewise constant
and a piecewise linear wave. These waves are hamed increment and correction w
respectively. It is easily seen that the numerical flux in this case reads

Fi =uQi_1+%u(l—u%)Axm_1, 9)
whereoi_; denotes the slope of the solution in c€|L;. The first term at the right-hand
side of (9) corresponds to the flux contribution from the increment wave, while the last te
is the contribution from the correction wave. Note that the increment wave alone yields
first-order upwind scheme and that the correction wave may correct this into a second-c
scheme if the slope is chosen correctly.
Next, consider the linear systefi(q) = Ag, whereA is a constanin x m matrix with

eigenvalues.P and eigenvectonsP. SinceA has a complete set of eigenvectors, the matri

Increment wave Correction wave
’// %
i .
uAt uAt PN ot
X Xi+1 X Xi+1 Xj Xi+1

FIG. 1. The piecewise linear function can be split into a constant state wave (the increment wave) at
piecewise linear wave with integral zero (the correction wave).
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is diagonalizable; i.e.,
A=RAR™,

whereR = [r1|r?|...|r™M is the eigenvector matrix and = diagAt, A2, ..., A™). For
acRlet

at = max0,a), a~ = min(0, a).
Define the positive and negative partsAofs
At =RA*R!, A =RARY (10)
whereA* = diag(At, A%E, ... AME),
The solution of the Riemann problem defined®y ; andQ; consists omdiscontinuities

moving with velocities\P. Each jump is a scalar multiple of the eigenvector; Mg, =
ai”r P. Hence, the juma\ Q; = Q; — Q;_; may be written as

AQ =) WP
p
The first-order Godunov flux is defined as

Fe = f(QP),

whereQP denotes the solution &/t = 0 of the Riemann problem with left sta@ _; and
right stateQ; . For the linear system this intermediate state equals

QR=Q 1+ > W=Q - W

AP<0 AP>0
Hence, the Godunov flux reads
FC=AQ_1+AAQ = AQ — ATAQ.

For the numerical scheme (8) we get
= At _
Q=Qi - B(A AQi + ATAQit). (11)

The expressioAtAQ; = Zp(x P)+ WP gives the flux contribution from the waves entering
cell C; from the Riemann problem at the left interface, whilteA Q; 1 gives the flux from
the waves entering the same cell from the Riemann problem at the right interface. T
piecewise constant waves, emanating from the Riemann problems, will be named incre
waves, as a generalization of similar waves in the scalar case.
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2.2. Second-Order Corrections

The scheme considered above is first-order accurate only. To increase the order, |
rewritten as

_ w At - -
Q=Q +A"- B(le —Fo, (12)

whereAi“p equals the upwind increment (the effect of the Godunov fluxes) obtained fr
(11);i.e.,

AP = — £ (ATAQ) + A AQLY). (13)

The termF; is used to update the solution so that second-order accuracy is achieved.
is based on the Lax—Wendroff scheme, though in Section 4 we will discuss the poss
merits of using other second-order schemes as the starting point.

The flux for the Lax—Wendroff scheme may be written as

1 At
F=FC+ZIA[1- —|A)AQ,
i i +2| |< AX| |> Qi
where|A| = At — A~. Hence, a natural choice féf; is
~ 1 At
Fi=ZIA(1- A )AQ
i 2| |< Ax| |> Qi
1 At
:52 |AP|<1—AX|AP|>WP. (14)
P

The Godunov scheme exhibits strong numerical dissipation and discontinuities in the s
tion are smeared, causing low accuracy. The Lax—Wendroff scheme, on the other har
more accurate in smooth parts of the solution. But near discontinuities, numerical disper
generates oscillations, also reducing the accuracy.

A successful approach to suppressing these oscillations is to apply flux limiting. Thi:
obtained by replacing the waw” = o/"r P by

WP = o (6P )WP, (15)

whered” measures the smoothness of the solution. A standard way of doing this i
consider the ratio of wave strengifa8 in the upwind direction; i.e.,

p p
alq /e, AP <O.

6P =

(16)

The limiters used here are originally constructed to ensure both second-order accurac
TVD properties for scalar conservation laws. For a detailed discussion of such meth
see [14, 25, 43, 44]. The TVD concept is not applicable in the system case directly,
applying this strategy to the characteristic equations, as done implicitly here, produces <
and monotone approximations of discontinuities.
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Note that® = 1 yields the Lax—Wendroff scheme, white = 0 yields the Godunov
scheme. In Section 4.3 we also study the Fromm scheme and the Beam—Warming sct
both being second-order accurate. Here we simply noteithaty gives the latter scheme,
while ® = (14 6)/2 gives the former. Some common limiters are

minmod: ®(0) = max0, min(1, 9))
superbee: ®(0) = max(0, min(1, 20), min(2, 6))
monotonized centered (MC):® (6) = max(0, min((1+ 6)/2, 2, 20)).

Minmod is the most diffusive limiter of the above, in the sense that it adds less downw
contribution. This limiter selects the wave with the smallest norm of the two compar
provided the jumps across the waves are in the same direction; i.e., the wave strengths't
common sign. If not, the wave is entirely suppressed. On the other hand, the superbee li
is known to be “overcompressive”; i.e., it tends to sharpen profiles into discontinuities. -
MC limiter seems to be a good choice in most situations.

As a generalization of the correction waves in the scalar case, the piecewise linear w
used in the second-order update will also be referred to as correction waves.

2.3. The Propagation of the Increment Wave in Three Dimensions

The one-dimensional algorithm summarized above can be viewed as a two-step pi
dure. The increment waves are used to define the donor-cell upwindﬁt‘%"rin (12), and
then correction waves (based on the piecewise linear reconstruction) are used to d
fluxesF;. In two and three dimensions the increment waves should also be propagate
the transverse direction(s) to improve accuracy and stability. The correction waves m
also be transversely propagated. For the two-dimensional case, the wave propagation
rithms with transverse terms have been presented in detail in [27, 28]. Here we concen
on describing the extensions to three dimensions, assuming familiarity with those pa
and using the same basic approach and notation. The donor-cell update is denﬁfﬁd by
and the fluxes resulting from all correction terms are denoteé Ry Gijk, andH;jx. These
corrections include both the second-order correction waves and the effects of any trans
propagation of increment or correction waves. Cell averages are updated based on
these values using formula (6).

In the three-dimensional case we still only solve one-dimensional Riemann proble
The increment and correction waves in 3D are simple extensions of those obtained in
dimension. A Riemann problem is first solved normal to each cell interface and then
Riemann solution is decomposed in the transverse directions by solving a set of simpl
“transverse Riemann problems.”

In each time step we begin by initializing

IL]‘,’( and the correction fluxes to zero:

Ak = Fijk = Gijx = Hijx = 0. (17)

These are then repetitively updated based on the solutions to various Riemann proble
cellinterfaces nearby. Rather than presenting the formula for one particular flux Sf:l@;h as
in terms of all the data nearby, it is much clearer and more concise to describe the ma
in which the solution to each Riemann problem is used in updating nearby fluxes. Thi
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also how the algorithms are implemented in @@WPACK code, and complete details may
be found by examining the software.

The description below will focus primarily on the solution of the Riemann problel
defined at the interfacr between cell(i — 1, jk) andC(ijk). We describe how the
resulting waves update the upwind term%"1 ik and A”k, the correction fluxFij at this
interface, and nearb@ andH fluxes. An analogous procedure is followed at each interfac
in they direction and in the direction.

Propagating the waves in different ways transverse to the interface leads to a famil
possible methods with different accuracy and stability properties. These will be built
over the next several sections. Stability analysis is presented in Section 4.

2.3.1. Scalar Advection

For the scalar equation (4), the simple first-order donor-cell upwind scheme results f
simply setting

At
Al]k = Auk XU+(Qijk - Qi—1jK)
At
AP = AP - xY (Qijk — Qi—1.jk)

and leaving all correction fluxes equal to zero. The Riemann solution consists of a sit
waveA, Qijk = Qijk — Qi—1,jx Which propagates to the right or left depending on the sig
of u. This results in the upwind term

At _ At _
Aify = _7AX(U+Ainjk — U AQivpji) — 7Ay(v+Ainjk — v AxQij41k)
At
+ —
— — (W AxQjjk — w™ AxQjj
AZ( XQIjk XQI],k-H.)

after all Riemann problems are solved in each direction. The stability condition of tl
scheme is easily seen to hﬂ% + |v| + |w| AL %5 = 1 (see Section 4). To increase both
stability and accuracy, the increment Wave is advected in the direction of the velocity ve
(u, v, w) (Fig. 2). This yields the “shift and average” scheme [27], in which the piecewi
constant function defined by the cell valu@sy is shifted according to the velocity and
then averaged back onto the grid. This method is clearly stable for Courant numbers up
This shift and average scheme is defined using the sameﬁtﬁ’ﬂn‘as above, but now

the nearbyG andH fluxes are updated to capture the portion of the wave which should
transferred into neighboring cells. Suppose, for example, that the velouitiegandw are

all positive, and consider the update(ﬁp,jﬂ,k given by the increment wave originating
from the interfacex = x;. (The wave is defined by the jumpA, Qijk = Qi_1,jk — Qijk
and the velocity vector.)

1 1 1 thi1 Ly X +u(t—tn)
Gi =G AyxQijikdxdzd
ij+1k - ij+1k — At AZ AX /Z /x. v XQIjk t

k+w(t—tn)
o 1At 1 At At
= Gijj+1k — EBUUAinjk + EUUWEEAinjk- (18)
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a (u,v,w) b Volume = 1/3 uvw At3

—

Hijat ket

Xist

FIG. 2. (a) The volume covered by the increment wave, when the velocities are positive. (b) The volume t
in updating the cell€;j \.; andCi j 1 k1.

Another way of deriving this expression is to consider the volume inGgll 1 x covered
by the wave, which equaI§UvAt2Az — %UUwAtS. Since the wave carries the constan
jump —A,Q;;, the appropriate flux update equals (18). Likewise, the volumes covered
this wave in the other neighboring cells are

1 1
Cij k1t éumtzAz—éulzwm3
1 3
Ci’j+1qk+1i éuvat .

These volumes are shown in Fig. 2b. The actual change in the solution equals these vol
times the jump-A, Q;jx and is obtained by updating the fluxes. There are several ways
distributing the solution updates between the fluxes in the scalar case. Here, an app
different from that in [27] will be used, since this will be in agreement with the appropric
terms in the system case.

When the velocities are positive, the flux updates are

At 1 At At
GI j+Llk == GI J+1k — 2 A — Ax Qljk + GUUwAX Az XQIJk
~ ~ 1 At At
Gi,j+1k+1 '= Gi j41ke1 — ZUvw Ay Qijk
6 AX AZ
1 At 1 At At (19)
Hij,k+1 = Hij,k+l EUUA AXQ”k + 6uvaX Ay XQIjk
~ ~ 1 At At
Hi i = Hj i — —Uvw——Ax Qiijk.
i, j+1k+1 i,j+1k+1 6 vaX Ay xQuk

Doing the same for increment waves originating from interfacgsdndz gives a scheme
identical to the shift and average scheme. Hence, we have obtained a first-order scl
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with the desired stability limit, i.e., stability for Courant numbers less than or equal to 1,
described further in Section 4.

Note that the update dﬁi,j+1,k consists of two terms. The first term, also found in
the two-dimensional wave propagation schemes (cf. [28]) corresponds to the part of
wave moving into cells sharing an interface with either of the cells defining the Rieme
problem, i.e.Ci_1 jx andC;j«. This feature will be nametlansverse propagatiormhe last
update, namedouble transverse propagatipis a pure three-dimensional contribution anc
is caused by the part of the wave moving into cells only sharing an edge with one of th
cells.

Also note that the updates & and H above contain a difference i Hence, these
updates will account for terms Iik@vqu and e—lsuquXyz in a Taylor expansion. This will
be studied to some detail in the next section.

2.3.2. Linear Systems

Here we consider the propagation of the increment waves for the linear system (5). S
the problem is assumed to be hyperboli,B, andC are diagonalizable. We define the
positive and negative parts &f similar to what was done foA in (10); i.e.,

B* = wMiw1, (20)

whereW is the eigenvector matrix, ard the diagonal eigenvalue matrix. The eigenvalue
areud, and the associated eigenvectars Likewise, letv' ands' denote the eigenvalues
and eigenvectors d&. Then we define

C* = SNtSs

where S is the eigenvector matrix anl the diagonal matrix with the eigenvaluesas
entries.

Before proceeding with the three-dimensional propagation of the increment wave,
expandj(x, y, z,t 4+ At) in a Taylor series including terms up to third orderii. This is
useful for understanding how the specific wave propagation affects the solution. Due tc
large number of terms, we only consider those differentiated first in

The flux updates resulting from a single interfacexishould lead to approximations of
these terms, which are

1 1
AtAgy + EAtZ(AZqXX + BAGy + CAg,) — éAt?’(A3qXXX + AB Aty + AC Agzx

+ B A%Gyxy + B?Atkyy + BC Atkzy + C A%Gyxz + C B Aty + C?Atkz)). (21)

The (full) wave propagation scheme to be derived will cover all these terms, except for
A3gyxx term. In addition, some fourth-order terms will be accounted for. This is necess
for stability, as discussed in Section 4.

Unless the matrices have a common set of eigenvectors it is not possible to decom
(5) into a system ofn scalar advection equations. Nevertheless, it is useful to talk abc
wave propagation locally even in the general case.

The first step in the algorithm is to solve the one-dimensional Riemann problem nor
to the interface, i.e., find (increment) Wa\)ﬂz‘g’j’k so thatQijx — Qi_1.jk = ZpWiE’k. This
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is exactly the same approach as used in the one-dimensional case. For example,
A" AxQik = Y )W, ATAQik =Y (P)TWE, (22)

and
w . . At N
Aijk = Ajjk — B(A AXQi+1,jk +A A><Qijk)-

Doing the same in thg andz directions yields a scheme in which waves only propaga
normal to the cell interfaces, i.e., the donor-cell approach.

Next, every increment wave from the Riemann problem ia split into waves moving
in they direction; i.e.,

Wi = Z BiwS. (23)
q
EachWiﬁ’k will then update any of the surrounditg fluxes depending on the sign b¥.
For example, if.P andu9 are both positive, then

~ ~ 1At
Gij+1k=Gij+1k — éﬂkpuqﬂi?ﬁlwq,

similar to the first term in the update in (18). The sum of all contributions to this flux giv
X A 1 At Pyt ,0\+ g PAK g
Gij+1k=Gij+1k — EBZZ(A )T (DT B w (24)
a p

Itis easily seen that this is equal to

. ~ 1 At
Gij+1k:=Gijs1k — > Ax BT AT AxQijk- (25)

The proper updates for the rest of tBefluxes are

~ ~ 1At
Gi_1jk :=Gi—gjk— EBB A”AxQijk
~ ~ 1At
Gijk := Gijk — EBB A* A Qijk (26)
- ~ 1 At
Gi_tj+1k = Gi—1j+1k — EHB+A_AXQijk'

Exactly the same terms are found in the two-dimensional scheme described in [28].
Note that since

B*At + B"At + BFA- + B"A™ = BA 27)

the flux updates above will result in an approximation to%lnﬂ2 B Ag,y term in the Taylor
expansion.
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Next, consider transverse propagation of the increment wave iz theection. This
results in an update of thie fluxes similar to (25) and (26),

~ ~ 1At
Hi—1jk = Hi—1jk — EBC A” A, Qijk
~ ~ 1At
Hijk == Hijx — E_C_A+Ainjk
AX
1At (28)
Hij k1 = Hij ki1 — EHCJFAJFAinjk
~ ~ 1At
Hi—1jker = Hi—gjker — EEC+A_Ainjk»

which accounts fo% At?C Aq. in the Taylor series.

In an implementation, updates like (24) would require the solutiam &iemann prob-
lems, in addition to the one necessary for obtainiy. In general, this involves too
much work. It is also in general too expensive to derive Afeand B* matrices explic-
itly and then perform matrix—vector multiplications. Instead the left-going flux differenc
A~ AxQijjk and the right-going flux differenc&™ A, Qjjx are split into eigenvectons? of
B, yielding transverse-moving waves. Thiansverse flux difference splitting obtained
by solving the following equations fdﬂk:

A_Ainjk :Z(gic}k)qu’ A+Ainjk :Z(Bi(}k)erq' (29)

q q

The computations of the flux updates in (25) and (26) are significantly simplified, 1
example,

BYATAQijk = Y _ (DT () Twt, (30)
q

with similar expressions for the rest of the updates. (The number of Riemann problems
interface is now 5, regardless of the size of the system.)

Comparing with (19), the updates caused by the increment waves do not, so far, acc
for full three-dimensional propagation. To do this, the waves should also move into ¢
only sharing an edge with the cells defining the Riemann problem, i.e., double transv
propagation. This yields approximations of cross—derivativesguxﬁc B Aqcy.. For this
term, the proper updates can be shown to be

~ ~ 1 At At
Hij,k+1 = Hij,k+1+ EBA_yC+|B|A+AXQijk
~ ~ 1At At
Hijk = Hijk + éﬂAyC IBIAT AxQijk
~ ~ 1 At At
Hijtik+t == Hijsiker — EEECJFBJFAJFAinjk
1At At (31)
Hij+1k '= Hij+1k — =— -—C BTA*A,Qijk

6 AX Ay
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1At At

Hijoiker = Hijotke + éH?yCJFBWMAinjk
~ ~ 1 At At
Hii_1k:=Hii_ Z__C B ATAQjik.
i,j—1k i] 1,k+ 6 AX Ay XQIJk

Six additional updates are also required. These are obtained by replagitigi — 1 in
the fluxes above and replacimg” Ay Qi with A=A, Qijx. Note that the updates in (28)
and (31) generalize the changesHhnin (19). To approximaté8C AQczy, Similar updates
are made to th& fluxes.

TheC* BT AT A, Qjjk termin (31) may be interpreted as follows. Each WHW,%< inthe
expansion ofA, Q;jk is split into waves moving in thg direction as in (23). Then each
BPIwP is split into waves moving in the direction; i.e.,8P%wd = 37, ¥ Pd's . It is easily
seen that

CYBYATAQik =YY Y 0P uHT )Ty P, (32)
|

q P

Regarding the implementation of these terms we do the same as done in (29) and (30

The flux differencesA* A, Qjjx are split in they direction accordingly. This yields the
transverse wave strength$”)*. The transverse flux differend®* AT A, Qjjx is defined
as in (30). Note that this term already is computed when approximating #ag, term.
Next, split this flux difference into waves propagating in #direction; i.e., solve

B+A+AXQijk 2277'5'. (33)
|
Using this, the update dﬁi,jH,kH reads

Hijirkra=Hijrike1 — éi)t(:t/ Z(V|)+U|S'-

To compute all updates in (31), al& A*A,Qjjx and BiA‘AXQijk need to be split in
the z direction. Hence, in addition to the Riemann problems needed in approximating
second-order cross-derivative terms &y, four new Riemann problems are introducec
per interface, by the third-order terms.

The scheme obtained so far is the generalization of the shift and average scheme. The
dimensional version is identical to the corner transport upwind (CTU) scheme discusse
Colella [7]. The scheme is stable provided

At At At
max| [AP|-—, [u%-—, V' |— | <1, (34)
p.g.l AX Ay Az

but the scheme is only first-order accurate on smooth solutions.

2.4. The Propagation of the Correction Wave

In this section we look at the propagation of the correction wave, so that the orde
accuracy increases. Note that the transverse propagation of the increment waves has a
led to terms modeling cross-derivatives needed in a second-order Taylor series expar
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To obtain full second-order accuracy, it is thus formally necessary to only include 1
pure second-derivative terntgy, dyy, andd,,. This is accomplished by propagating the
correction waves normal to the interfaces.

However, the resulting second-order accurate method would have very poor stak
properties. To maintain good stability properties, we must also perform a transverse p
agation of the correction waves in a multidimensional manner. This is developed in 1
section and then stability analysis is presented in Section 4.

2.4.1. Scalar Equation

We will illustrate the transverse and double transverse propagation of correction we
in the case of scalar advection. First, the correction wave is added as in the one-dimens
case, which gives the terms formally needed for second-order correction but ruins
stability. Again, we present formulas only for tResweeps, with analogous modifications
needed in the other directions:

~ ~ 1 At
Fijk 1= Fijk+2U(1—UAX)Ainjk- (35)

The flux (or slope) limiter is applied exactly as in the one-dimensional case; i.e., in (:
and (16), letV? = o = AxQijk.

To propagate the correction wave in the transverse direction, the natural approach
move it in the same way as the increment wave (18). Let

c(X,t) = (X — X +0.5Ax —a(t —t,))AxQjj /AX

denote the correction wave associated with Ggll; jc. (Note that a limited version of
AxQijk could be used.) Then we have that

. 5 1 1 1 the1 Zxy1 X +u(t—tn)
Gijt1k = G<_-+1,k————/ / ve(x, t)dx dz dt
b b At AZ AX Jy, Zew(t—ty) Jx;

At /1 1 At
- - A
AX< ) XQIJk

=G
i,j+1k T Uv 2 6 Ax

At At (1 1 At

wEB é_é Ax >A Qijk- (36)

With corresponding updates of tlh~ﬁ,j+1,k+1 flux, stability is restored. However, the stabil-
ity is not as good as wanted and the progation of the correction wave has to be done slit
differently in order to obtain (34). Instead of (36), the following update will be used:

~ ~ 1 At At
Gi,j+1k = Gijy1k + U <1— UAX>Ainjk
1 At At At
——u 1—u Ay 37
2 Y AXAZ( AX ) Qiik- 37)

Note that only the coefficients are changed. Even if the wave is not advected with
velocity field, it is possible to interprete the update as resulting from a wave propagat
The geometrical interpretation of the total motion of the correction wave is that it consi



THREE-DIMENSIONAL CONSERVATION LAWS 141

FIG. 3. The propagation of the correction wave when the velocities are positive. The wave is first shifte
distanceuAt in the x direction, causing an update §f1k. Next the wave is shifted a distaneét, causing an
update oféi,l_myk andéi,myk. Finally, the wave is advected a distancat in thez direction, causing a update
of four H fluxes.

of several steps. In the first step, the wave is moved a distan¢en the x direction.
This results in the familiar 1D update (35). Next, the wave is moved a distaité the

y direction (transverse propagation), followed by a final step in which the wave is mo
a distancew At in the z direction (double transverse propagation). These three steps
shown in Fig. 3. Note that alsé and H fluxes in the downstream direction are updatec
Since there are two coordinate directions covering the transverse propagation, the twe
steps above have to be repeated but now in reversed order, i.e., first propagatibarin
in y. This will be discussed in more detail below.

2.4.2. Linear Systems

As for the scalar example above, the algorithm for propagating the correction wave s
by updating the normal fluxes coordinate-wise,

~ ~ 1 At ~
Fijk == Fijk+§zp:|)hp|<l_ﬂ|)hp|>wi?k' (38)

The limiting is done exactly as in 1D. This is a potential weakness of the method si
the limiter only takes into account waves propagating normal to the interfaces. At le
for scalar problems there exist ways of doing multidimensional limiting, but they are m
expensive to use (e.g., [1, 24, 36, 50]. However, numerical experiments show that this sil
one-dimensional limiting is able to control oscillations in a satisfactory way.

Naturally, the 3D propagation of the correction wave has much in common with |
propagation of the increment wave. Instead of propagating one wave at the time, a gro
waves will be split into waves moving in the transverse direction.

Define

At ~
5=Z|xp|(1— AXMP|>W§k. (39)
p

This term is to be split in botly andz directions. For example, consider the splitting in the
y direction of this correction term into an up-going and a down-going part; i.e., decomp
S as

S=> el (40)
q
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The Waves”kwq will update two of the surrounding fluxes depending on the sign af.
For example,

Gijran=Gijrakt 2 5 Ax Z(W hewd, (41)
~ ~ 1At
Gi—l,j+1,k = Gi—l,j+1,k T 2Ax Z(Mq)+8ic}kwq' (42)
q

Down-going waves would instead affeétjk andG; —1,jk- Recall that the flux updates made
in the transverse direction consist of the same terms as in the 2D scheme augment
purely three-dimensional terms. In matrix notation, these two-dimensional updates are

o ~ 1 At
Gi,js1k = Gi,j+1,k+2AB+|A|< |A|AX>Ainjk

1A

Gljk = GI]k + - 2A

B |A|( |A|%)AXQHK
43)

~ ~ 1At At
Gi_1j = Gj_1; ——B"|A Al— ) AxQij
i—1j+1k i—1j+1k — 2 °AX | |< | lAX) XQI]k

o ~ 1A At
Gi_1jk == Gi—vjk — EFB |A|< |A|AX>Ainjk~

In two dimensions, it is possible to avoid the computation of the eigenvector expansion
Riemann problem) in (40) by including in the 2D part of the flux differences in (22). The
proper modifications are

A"AQijk = ATAQijk — S

A" AxQijk = A" AQijk + S.

(44)

Since%S already is computed in (38), including this transverse propagation requires vil
ally no extra work.

In two dimensions, the inclusion of the transverse propagation of the correction w.
increases neither the order nor the stability limit of the method, but the accuracy may
improved. However, in three dimensions this contribution is essential.

In the three-dimensional case, updates similar to those in (43) must be madetto th
fluxes. In matrix notation these terms are

~ ~ 1A At
Hij,k+1 = Hij,k+1+2AC+|A|< |A|AX>AXQijk

- ~ 1A At
Hijk = Hijk + EIC IAI( |A|AX>AXQijk

1A (45)
Hi—1 k1 = Hicyjker — érc+|A| (1— |Al— )Ainjk

- 1A At
Hi—tjk= Hi—gjk — > Ax C IAI( IAIA)()Ainjk-

To compute these updates, the correction t8rmust be split in the direction.



THREE-DIMENSIONAL CONSERVATION LAWS 143

Above we mentioned that there are good reasons for using updates of the form
instead of the more intuitive updates (36) resulting from pure advection of the correct
wave. The best reason for this is that the stability is increased; cf. Section 4. The updat
(37) are also beneficial for accuracy reasons. Consider the Taylor expangidiw to the
large number of terms, we begin by including only terms that arise in the 2D case. Assi
that we want to construct a third-order-accurate scheme. Then we have to approximat
following terms:

1
—éAtg(Asqxxx + A2BGyxx + AB Adyx + AB%Qyyx

+ B A%Qyxy + BABGxy + B2Aleyy + B3qyyy). (46)

In addition to these terms, we have to approximate terms arising in the truncation errc
the approximations of the first- and second-order terms already derived.
For example, the truncation error in the approximatioé at?B Ag,y is dominated by

1 1
—ZAtZAx(B+A+ —BYTA" + B AT — B A )Oxy = —ZAtZAx Bl AlGxxy- (47)
Then approximating
1 1At
At’AXBIA|| S — Z—|A 48
A3~ 5 axA oo 8)

will cancel the truncation error (47) and add the cormgt, term from (46). Deriving
similar expressions for the rest of the first- and second-order terms yields

1At3ABA + At2AXB|A| - lAt|A| + At2AX ! 1At|A| |A|B
6 Gy 47 6ax 1) Iy 47 6Ax Gyxx
1 1 1At
- 6At3|3A|3q,Xy+ At?AX AB| (4 - 6AX|B|>qyyx
1 1At 1 1
+ At?AX (Z — EB|B|> |B| Alkyy + éAt3A3qxxx + E;At3|33qyyy_

These terms must be approximated to achieve a third-order scheme. (Note that the u
in (36) results in an approximation to only one of these terms that is shown in (48).)

Assume thatA and B commute, i.e., thaAB = B A. Then the expression above, with
Oxxx andgyyy omitted, reduces to

1 At 1 At
EAtZAx B|A| (1 — AX|A|)qxxy+ éAtszA|B| (1 — Ay|B|)qyyx. (49)

The transverse propagation of the correction wave as done in (43) yields exactly the de
approximation of the first term in (49). The second term is approximated by the sim
transverse propagation of the correction wave emanating from interfacesyinliteetion.

For scalar advection with constant coefficients, a third-order-accurate scheme is e
obtained. Once transverse propagation of the correction waves is included, only the t
Oxxx andgyyy need to be approximated (cf. [27]).
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Finally, consider the purely three-dimensional terms in the update, i.e., terms generali
the last term in (37). Note that since this update of@hfbux contains twoAx and oneAz
and these fluxes are differenced in thdirection, the contribution of this term approximates
the fourth-order derivativeyyzy.

In a Taylor expansion of the scalar problem, all derivatives of fourth order involving tv
derivatives inx and one in botly andz add up to

1 At
—EAtQ’Ax Uvw (1 - Bu) Oxxyz (50)

Above, we assumed that the matridand B commute, and we do the same here4oB,
andC. Hence, (50) is split evenly between Bdluxes and théd fluxes in the system case;
i.e.,

1 At 1 At
_ZMSAXC B|A| (1 — B|A|> Oxxyz — ZAth BC|A| (1 — H'N) Oxxyz (51)
The first term is approximated by the following flux updates:

~ 1At At At
Hij ket o= Hij ks — 4AAyC+|B||A|< |A|AX>Ainjk

- ~ 1 At At At
Hijk = Hijx — ZA_A_yC | B |A|< |A|B)Ainjk

Hijrakes o= Hijrike + iit E;CJFBJWN( |A|2:(>Ainjk .
Hijiik = Hi,j+1,k—i§t2:/ B+|A|< |A|§;[(>Ainjk

Hijotket == Hij1kp1 — ii)t( §;C’LB+|A|< |A|%)Ainjk
Hij ok = Hij 1k — iit 2; B~ |A|< |A|2;[()Ainjk-

In addition to these updates, six additional updates are required in wigaleplaced by
i — 1in the flux subscripts. The sign of the update is also switched.

Note that these updates involve the same interfaces as the double transverse propa
of the increment wave (31). The updates above require the solution of four additic
Riemann problems. But due to the similarities, they may be included in the computa
of the double transverse propagation of the increment wave. The proper updates for
inclusion are

3 At
BT A*A«Qijk = BYATALQijk — §B+|A| <1— |A|> Ay Qijk

_ _ 3
BT A~ AxQijx := BTATAQijx +§B+|A| IAI— AxQijk

(53)

B~ A" A, Qijk := BTATAQjjx — nglAl (1 2:() Ay Qijk
( ) x Qijk -

3 At
B™ A AsQiik := BT A AQij -B7IA|[1- A
le]k le]k + 2 | Al | |AX
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With these changes, both the double-transverse propagation of the increment wave ar
correction wave are covered by the updates in (31). Finally, doing similar updates for
G flux will give approximations to thelxzytermin (51).

Above, it was necessary to assume that the matrices commute when propagatin
correction wave in the transverse direction. Note that this only affects (some) third-
fourth-order terms in a Taylor series. Not assuming this would require that a large nun
of new terms, likeAB Agcyx, be approximated. This would lead to an extremely comple
code, and recall that we are interested in these terms for stability only. We have not |
able to find examples in the system case for which the assumption of commuting mati
yields a more restrictive stability limit than the optimal we get for the scalar case.

2.5. Nonlinear Problems and Extensions

So far, only linear problems have been considered. However, by the use of local linea
tions, only minor changes have to be made to apply the scheme to nonlinear problem:
Motivated by the notation used for linear systems, the upwind contribution in (6) reads

At At
Ajfy = _E(A+Ainjk + A7 AxQitajk) — A_y(B+AyQijk +B7AyQij+1k)
At
- H(C+Ainjk +C AQij kt1)- (54)

Here, the termsl* A, Qjjk, etc., are to be understood as symbols. The scheme is conserve
provided

f(Qijk) — F(Qi—1j) = AT AQijk + A~ A Qijk
9(Qijk) — 9(Qi,j—1.k) = B AyQijk + B~ AyQijk (55)
h(Qijx) — h(Qij k-1) = C*A;Qijk + C~ A, Qijk.

The process of finding the term4™ A, Qjj«, etc., so that (55) is satisfied is a form of
flux difference splittingin addltion, wave StrengthA/i’j’k and wave velocitiesi’}k must be
defined so that the flux ternts;jc can be established. Note that waves and velocities &
space dependent. There d&fg, waves involved, not necessarily equal to the dimension «
the systenmm.

The flux difference splitting and associated waves and velocities may be obtaine
different ways. The obvious way is to apply a local linearization that is conservative
popular choice is the Roe solver [33], where a local approxima#ign is made to the
Jacobianf’(q). This involves finding the stat®j;, depending orQ;_1 jx andQjjk so that
if A = f(QI*Jk) then

Aijk (Qijk — Qi—1.jk) = T(Qijk) — F(Qi_1jk). (56)

This property ensures conservation. The wa»ae’;; and associated speexq‘?ﬁ( are derived
exactly as in the linear case. A matrix satisfying (56) is found for several important syste
like the Euler equations of gas dynamics.

Since the solution only consists of discontinuities, rarefaction waves may cause probls
If these waves are transonic, i.e., involve both positive and negative velocities, the nume
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solution may contain physically incorrect shocks. To correct this, an entropy fix should
applied [17, 25, 35].

In the linear case, it is reasonable to compare wave strenﬁt(ﬂ%) from neighboring
interfaces, since the eigenvectoPsare constants. In the nonlinear case, the wavgs. ko
Wi‘;’k, andWi’ilqjk are not in general parallel, as vectorsRA. In CLAWPACK, the default
limiting is based on a projection Wi’:tl,jk ontoWiﬁ’k. The lengths of these projections are
compared to the length (W,'j’k The limiting is performed according to

Wi = @65 )W,

0 {(Wip—l,jk’ W)/ WheWh). Al >0
-
! (W1 Wil) / Wik Wilk)» Mk <0,

where(-, -) represents the inner productif'. Note that this limiting generalizes the limiting
used on linear systems, i.e., (15) and (16).

We have used Roe-type Riemann solvers for the Euler equations in the computa
presented here. There exist many other ways of defining the flux difference splitting
associated waves that can also be used in our formulation. In some situations it migt
advantageous to use the exact solution of the Riemann problem. For example, when ag
to the Euler equations, the Roe solver may produce negative pressure if the jump is |
enough. Assume thfmﬂ-k, the exact solution fok = x;, has been found. Then the flux
splitting can be defined as

AT AQijk = F(Qij) — (Qfy)
A™AQij = f( io]_k) — F(Qi—1jk)-

The waves and the associated velocities needed for the correction waves also mu
specified. The states in the exact Riemann solution naturally define the Jiji,psIf
the original waves are discontinuities, the velocities should be chosen according to
Rankine—Hugoniot condition. If the waves are rarefaction waves, an average velocity c
be used.

A third approach is worth considering: a hybrid version in which the exact solver defir
the flux splitting, and the Roe solver defines the waves and velocities.

Transverse and double transverse propagations of increment and corrections wave
accomplished by constructing matricBg« andC;jx. These matrices are simply taken as
the Jacobiang’(q) andh’(q), respectively, evaluated at a state “closeQt0.1 jx andQjjx.

A good choice is to use the Roe-averaged s@jg already computed in the construction
of the flux difference splitting.

Each product between a matrix and a vector corresponds to a Riemann problem. W
an entropy fix may be necessary for the flux difference splitting, computations indicate |
there is no need for this correction in the transverse direction. Hence, the Riemann prob
used in computing these flux updates require less work than the Riemann problems i
normal direction. No entropy fix is needed, and the state used in evaluating the Jacol
is already computed.

A family of wave propagation schemes is defined by how the increment waves «
correction waves are propagated. The order, accuracy, and stability depend on hov
waves are treated. Itis useful to establish a notation refering to how the propagation is d
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Let a specific scheme be defined by the three param@tersn,, mz), where the integers
my, My, Mz have the following meanings:

1 The second order correction wave is not included
m; = thus the method is formally first-order accurate.
The correction wave is included.

No transverse propagation.

Transverse propagation of the increment wave.

Transverse propagation of both increment and
correction wave (require®; = 2).

my =

NF,PONDN

No double transverse propagation.

Double transverse propagation of the increment wave (requires 0).
2 Double transverse propagation of both increment and

correction wave (requiras, = 2).

= O

For example, Method (1, 1, 0) defines the first-order scheme in which the increment w
moves as in 2D. The complete wave propagation method is Method (2, 2, 2).AWRACK,

m, andmg are specified by a two-digit integer; hence, the method is identified by only t
parametersn; and 10 m; + ms.)

The number of Riemann problems needed increases as the propagation becomes
and more complex. In the first-order donor-cell method, i.e., Method (1, 0, 0), only c
Riemann problem must be solved per interface. If the increment wave moves as in the
case (Method (1, 1, 0)), four additional problems must be solved. The generalization o
shiftand average scheme, i.e., Method (1, 1, 1), requires a total of 13 Riemann problems
Riemann problems must be solved per interface for (the unconditionally unstable) Met
(2, 1, 0). The simple generalization of the full 2D wave propagation scheme, Method (2
0), requires seven Riemann problems. This number may be reduced to five as noted a
The shift and average scheme, plus propagation normal to the interface of the corre
wave (Method (2, 1, 1)), requires the solution of 15 Riemann problems per interface.
same number is required for Method (2, 2, 2), the full three-dimensional wave propaga
scheme.

The total number of Riemann problems needed per cell is three times the numbel
interface. This indicates that the 3D wave propagation methods may be computatior
expensive, depending on the choice of Riemann solver. Using the Roe-solver apprc
only one of the Riemann problems, per interface, requires the entropy fix and compute
of the Roe-average state. The rest of the Riemann problems involve significantly less w
essentially just a matrix—vector multiply to decompose a vector into eigencomponents

The advantage of using (6) with the flux difference splitting (55) in the definition of tt
upwind termAi“jﬁi is that the flux functions are not explicitly needed. As a concequenc
the same scheme is applicable to a larger class of quasilinear hyperbolic problems c
form (3). The matrices may depend gny, z, andt in addition to the solutiom. In the
“flux difference splitting” (which is called “fluctuation splitting” more generally in [28]),
the waves and associated velocities are easily defined. However, note that spacially va
matrices may result in reflections in addition to transmission of waves across cell interfa
This complicates the problem, but may still be treated within the same framework; cf. [
for details.
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3. APPLICATIONS

In this section we consider the Euler equations which model an inviscid, compressi
and non-heat-conducting gas. The system may be written as

0 pu pU ow

ou pU% 4+ p pUv pUw

pv | + puUv + | pv’+p | + pYw =0, (57)
pw puw pVW pw? +p

Eli |uE+p v(E + p) w(E + p)

X y

wherep and p denote the density and pressure. The velocity components i theand
z directions arau, v, andw, respectively. If we assume that the gas is polytropic, the tot
energy densityE is

R A S SN N
E_2p(u +v +w)+y_1p,

wherey is a gas constant taken to be 1.4 in the examples below.

The Roe approximate Riemann solver is used in all the following examples. Thus,
Jacobian matrices are evaluated at a specific state, as described in Section 2, in or
ensure conservation and to define the waves needed in the algorithm. For details on thi
[33] and the Riemann solver routines in tBRAWPACK software [29]. In [28], the details
concerning the solution of the two-dimensional isothermal equations are given. We refe
that paper, since the main principles are the same, when it comes to defining matrice:
flux splitting, as in the three-dimensional full Euler case.

3.1. Smooth Euler Solution

To verify second-order convergence, we consider an initial value problem with a smc
solution, at least for the time interval considered. Initially, the gas is at rest and

p(X,y,2,0) = E(X,y,20) = 1+ 0.1e 30 -D*,

wherer = /x2 + y2 + 2. The solution will remain spherically symmetric. Due to this, it
is possible to formulate (57) as a one-dimensional conservation law with a source tern

o pu 1 pu
PUl + | pu+p | = - ou? | (58)
Ele lue+pl], u(E + p)

Here,u denotes the radial velocity. An accurate reference solution is obtained by solv
this equation using one-dimensiorAlIAWPACK routines. Due to the symmetry, the com-
putational domain for the three-dimensional scheme can be taken to be a single o
(X, ¥, 2€[0, 2] x [0, 2] x [0, 2]. At the boundariex=0, y=0, andz=0, symmetric
boundary conditions are used. The remaining boundaries are all of the outflow type desci
in [28].
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TABLE |
Errors for the Smooth Euler Problem Computed with Method (1, 1, 1) on aN x N x N Grid

1-norm errors Max-norm errors

N P pu E P pu E

20 6.482x 10%  2.498x 10°*  9.425x 10  9.398x 10°  7.496x 10°® 1.373x 1072
40 3.492x 10%  1.338x 10° 5.074x10° 5292x10°%  4.389x 10°  7.738x 10°°
80 1.831x 10°*  7.003x 10°*  2.658x 10°  2.729x 10°*  2.350x 10°  3.984x 1072
Order 0.93 0.93 0.93 0.96 0.90 0.96

Note.The errors inov and pw equal the errors ipu. The convergence order is estimated on the two finest
grids.

Boundary conditions are imposed in exactly the same way as described in [28] for
and two dimensions: two additional rows of “ghost cells” along each edge are introduc
Values in the ghost cells are set in each time step in such a way as to give the co
behavior. Zero-order extrapolation is used at the outflow boundaries while reflection is L
at the symmetry planes.

The solution is computed on &hx N x N grid attimet = 0.5. In Table I, the errors for
Method (1, 1, 1) are given fdl = 20, 40, and 80. The errors are computed by comparir
them with the one-dimensional reference solution. The rate of convergence is estim
using the two finest grids according to the formula

1 erronAx)
convergence ordet — In[ ——— .
In2 erronAx/2)

The errorsirpv andpw equal the errors ipu. As expected, this scheme is approximately
first-order accurate. In Table Il, the errors for the full wave propagation scheme Methoc
2, 2) are given. Since the solution is smooth, no limiting is performed. According to 1
figures in this table, the scheme is second-order accurate on this problem. In Fig. 4, sc
plots of the density usin = 20 andN = 40 are shown. Every value in tié¢ x N x N
grid is plotted against, the distance from the origin. The solid curve corresponds to tl
reference solution. In the computations for both the first- and second-order scheme,
time stepsAt = Ax = 2/N are used giving a Courant number of approximately 0.78.

TABLE Il
Errors for the Smooth Euler Problem Computed with Method (2, 2, 2) onaN x N x N Grid

1-norm errors Max-norm errors

N P pu E P pu E

20 4.334x107°  1.705x 102  6.290x 10°*  6.985x 10°  5.140x 103  1.012x 1072
40 1.361x 10°* 4.767x10* 1.961x10° 2331x10° 1.761x10°  3.368x 1073
80 3.541x 10*  1.254x10* 5.091x10“% 6.387x10* 4.931x 10* 9.216x 10*
Order 1.94 1.93 1.95 1.87 1.84 1.87

Note.The errors inov and pw equal the errors ipu. The convergence order is estimated on the two finest
grids.
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FIG. 4. Scatter plots for the Euler equation with a smooth solution, computed with Method (2, 2, 2). T
density is depicted against the distance from origin. In the left pictire,20, while in the right picturéN = 40.
The solid curve is the reference fine-grid solution from a one-dimensional spherically symmetric calculation.

3.2. A Spherical Riemann Problem

In this example we consider a spherical Riemann problem between two parallel wall
z = 0andz = 1. Initially the gas is at rest with density and presseyig = 1 andpo,t = 1
everywhere except in a sphere centered at (0, 0, 0.4) with radius 0.2. Inside the sp
pin = L andpi, = 5. The jump in pressure results in a strong outward moving shock wa
and contact discontinuity and an inward moving rarefaction wave. This inward movi
wave causes a local “implosion,” and a second outward moving shock wave is crez
The main features of the solution are the interactions between these waves and bet
waves and the walls. Another significant feature is the development of a near stationary
density region in the center of the domain. Until the initial shock wave reaches the lo
wall, the solution is spherically symmetric. After this, the solution will remain cylindricall
symmetric. Hence, it is possible to formulate this as a two-dimensional problem witl
source term,

P pu pw pu

u 2 puw 1 2
ol I e BRI == P (59)
pw puw pwe+ p r puw

El. LuE+p w(E + p) u(E + p)

r z

whereu now denotes the radial velocity in the-y plane. This equation is solved using
two-dimensionalCLAWPACK routines, and the results are used for comparison. The tw
dimensional problem is solved on a 68@100 grid. Due to the symmetry, the computationa
domainig(r, z) = [0, 1.5] x [0, 1], wherer = /X2 + y2. Figure 5 shows a schlieren picture
of the solution at = 0.7. This picture emulates a photographic technique used in physi
experiments. The magnitude of the density gradient is depicted. The larger the gradien
darker the region. Strong nonlinear shading is used to enhance weak structures in the
In this figure, the symmetric part is also depicted. Note the strong contact discontin
surrounding the low-density region near the center. There is also an nonphysical fee
visible near the center of the domain. It is caused by the wave focusing and is highly
dependent. Due to the nonlinear shading in this schlieren image, the magnitude of
feature is exaggerated. Its influence on the rest of the flow field is actually very weak.
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FIG.5. Aschlierentype image showing the densityat0.7. The two-dimensional axisymmetric problem has
been solved using a 600400 grid on half the domain (8 x < 1.5, 0 <y < 1) and reflected te-1.5 < x < 0.

Due to the symmetry, the computational domain for the three-dimensional algorithr
(X, ¥,2) €0, 1.5] x [0, 1.5] x [0, 1]. In Fig. 6, the pressure in the-z plane at = 0.7 is
shown using an increasing number of cells. The solution is computed using Method (:
2). The two-dimensional results are also given for comparison.

Another way of graphically indicating convergence is to consider scatter plots, like th
used in the previous example. In Fig. 7, the pressure is plotted against the distance frot
z axis. The plane used = 0.4 att = 0.7. These pictures indicate not only that the mait
features are well resolved, but also that the finer structures appear to be converging. In

~AARAD

FIG.6. The pressureinthe-zplaneat =0.7 computed on differentgrids: (a) 3737 x 25, (b) 75x 75 x 50,
(c) 150x 150x 100. In (d), results from the corresponding 2D computation using a6@@D grid are shown.
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FIG. 7. Scatter plots of the pressure versus the distance fronz tieds in the planez=0.4. In the left
picture the computational grid is 3575 x 50, while in the right a 156 150x 50 grid is used. The solid curve
corresponds to the 6060400 2D computation.

the two-dimensional and the three-dimensional computations, MC limiters are used ol
waves. In these computations the Courant number was approximately 0.9.

Additional images and animations from both the 2D and 3D computations may be fol
on the Web page [20].

3.3. Vorticity Generated by a Shock Wave

As an example of a pure three-dimensional problem, we consider the situation wt
shocks interact with variable density regions. One practical application of such proble
is the study of how vorticity produced by these interactions mixes two different gases.
problem is often simplified by considering a single planar wave hitting a cylindrical
spherical region containing a different gas; cf. [10, 30]. In these papers a two-compor
gas is considered. Here, we only consider a single-component gas.

Initially, the gas is at rest. The pressure and the density equal unity everywhere, excey
two cylindrical regions perpendicular to each other. Both cylinders contain constant s
gas. Theradius of each cylinderis- 0.2. Inthe cylinder along theaxis, i.e., with symmetry
axisx =y =0, the density i» = 1 but the pressure = 10, and thus cylindrically shaped
shock waves will emanate from this cylinder due to the overpressure. The other cylinde
parallel to they axis, with symmetry axix = 0.4 andz= 0. In this cylinder, the pressure
is p=1, but the density is lowep = 0.1. The resulting contact discontinuty is stationar
until it is disturbed by the shock waves. The initial set up is depicted in Fig. 8a.

The experimentis setup in such away that as the front shock hits the low-density cylin
a huge amount of vorticity is produced. Lét= V x U denote the vorticity. The vorticity
equation reads

R S \Y \Y
—w:Vx(uxw)+M.
ot 02

(60)
The last term on the right-hand side is called the baroclinic source term and is respon:
for the vorticity production.

As the shock wave propagates through the low-density region, the latter winds up into
rotating regions (or rolls). The contact discontinuity resulting from the high-pressure reg
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High pressure
a 9

FIG. 8. (&) The initial condition. The rest of the images depict the quanjlity|, also used in schlieren
pictures, at different times: (h)=0.1, (c)t =0.3, (d)t =0.5.

will also be rolled up in this vortical motion. The upper roll rotates counter-clockwise, wh
the one below rotates in the clockwise direction. These two regions will after some ti
interact. Another vortical feature is the formation of vortex tubes on the envelope of
rolls. This is a pure three-dimensional feature and creates a periodic pattern in the le
direction of the low-density region. These vortex tubes will become stretched due to
motion of the rolls and eventually burst, resulting in a turbulent looking region. The shc
wave has passed a long time before the flow reaches this state. In the early state of the
interaction, the part of the wave that penetrates the low-density region speeds up due
increased sound speed. This results in a splitting of the shock wave.

The computational domain is [0, 1.5][0, 1] x [0, 0.5], and symmetry is assumed acros:
the planex =0,y =0, andz= 0. Due to the turbulent-like behavior, the symmetry assumj
tionis not correct, butis selected to geta manageable grid size. The computation is perfo
on a 300x 200x 100 grid with Method (2, 2, 2), and the MC limiter is used. As expectel
the details in the vortex dynamics depend on the limiter used, and the results in this re
should only be taken qualitatively.

In Fig. 8, the solution is shown at different times. Details on the quantities depic
and techniques used are described belowt AD.1 (Fig. 8b), the incident shock wave
has partially encapsulated parts of the low-density cylinder. The two essentially cylindr
surfaces are, from the left, the contact surface and the shock wave. Note that this pe
the shock wave has a lower speed than the one encapsulating the low-density cylinde
mentioned above, this is due to the increased sound speed inside this cylinder. Also
that the low-density cylinder has started to collapse due to the interaction with the sk
wave. In Fig. 8c, at =0.3, the roll has become more visible. Note that the incident sho
wave has passed this vortex in most of the computational domain, and that the intera
has created a triple shock configuration. In Fig. 8¢ 0.5), the periodic pattern on the
envelope of the roll is seen. Inside each of these finger-shaped regions, there is a lo
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FIG. 9. A subset of the computational domain shownt at0.8. Both enstrophy and (low) pressure are
visualized in this picture.

smaller vortex tubes. (This is illustrated more clearly at a later time in Fig. 9). The we
shock located at the top of the roll is an implosion shock, similar to the one that appe
in the previous example.

The images in Fig. 8 were produced using the visualization tool Viz [51], freely availal
for noncommersial use. Viz is a highly interactive tool for displaying large voxel-bas
data sets. It was initially created to utilize the potential of hardware accelerated 3D textu
The voxel may be thought of as a single cell in a regular grid, including information on t
solution value (or color) and the associated opacity. Due to the possibility of adding opa
to the dataset, a range of values can be studied, in contrast to the more common iso-st
technique.

When using volume graphics for visualizing shock structures, very little needs to be d
as long as the schlieren quantiy= |V p| is used. Typically, the opacity map is monotonic,
starting with zero opacity in a neighborhood®% 0. Then it increases to full opacity in
another relatively small region. In the region where the opacity increases, the value
the HSV color model should also change, typically from darker to brighter, to add so
contrast to the image. (In the HSV model, a color is specified by its hue (H), its purity
saturation (S), and its lightness or value (V)). This simple, and very easy to use appro
is used for making Figs. 8b—d. An isosurface-like image is shown, but there is no nee
specify discrete values &. All discontinuities are visible, except for those very weak one
that may hide in thes range, where zero opacity is specified. Note that due to the char
in value V and opacity, weaker discontinuities appear to be darker and more transpare



THREE-DIMENSIONAL CONSERVATION LAWS 155

In Fig. 9, another application of voxels graphics and Viz is shown. The tilne 38 and
only a subset of the data is shown, centered along the roll. Two scalar fields are display
the same scene. To visualize the smaller vortex tubes on the envelope of the roll, the enst
isused, i.e |»|2. Note that the surfaces of these tubes are made darker to enhance the shs
these features. The other quantity shown is the dominating low-pressure region. In conr
to the enstrophy, the surface of this region is made lighter. Animations and additional (cc
images from this computation may be found on the Web page [20].

4. STABILITY

In this section we investigate the stability properties of the algorithms introduced
Section 2 applied to linear problems. Initially we study the case with no limiter, so that
numerical scheme itself is linear and we can use the von Neumann analysis. In Sectio
we also investigate the effect of limiters by running the algorithm and calculating am|
fication factors for different sets of initial data. This is of interest because we have fol
that some methods which are unstable without limiters due to exponential growth of hi
frequency components are stabilized by the use of limiters.

We consider the scalar advection equation with constant coefficients in Section 4.1.
linearized Euler equations have also been studied and we found that the algorithms
similar stability properties in each case.

For a general linear systega + Adx + Bay + Cq, = 0 in which the matrice#\, B, C
have eigenvaluesP, 19, andyv', respectively, we define trdirectional Courant numbers
as

At At At
= —maxaP|, = —maxudl, = —maxy'|, 61
w1 = éiﬂ [, w2 Ay e X', w3 A" X' | (61)

and sets = (w1, wo, w3), Not to be confused with the vorticity in the previous section. Th
Courant number is the maximum of these three quantites. The best we can hope for
methods of the type developed here is that they will be stable for all Courant number:
tol,i.e., for

max(ws, w2, 3) < 1. (62)
This set is a cube im1—w,—w3 space. For most methods the stability restriction is mo:
severe along the diagonal of the cube, i.e., for the special case where, = w3, and it
is often possible to obtain analytic expressions for the amplification factor in this spe
case. When this case is considered we will denote the common vadubyoby,
w4 = w1 = w2 = ws, along the diagonal
Von Neumann analysis is based on inserting the Fourier mode

QIJK — i (51 4+nK+6K) (63)

into the numerical scheme. We use capital lettef& as the grid index here to avoid
confusion withi = /—1. For a linear method on a linear problem, this will result in al
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expression of the form

Qiik =T, 7,60, Qiik, (64)

whereQ denotes the numerical solution at the next time step. For scalar advextiom,
scalar. For a system afi equationsT is anm x m matrix. In the scalar case, the method
is stable for giver if

T(0) = gﬂang(é, n,0,0) <1, (65)
1

where maximum is taken form < &, 1,6 < m. In fact for all the methods considered,
T(0, 0,0, ») = 1 for all ®, so (65) will be satisfied with equality in the stability region.
Only in simple cases is it possible to obtain analytic expressiori (@). The diagonal
case wheres = &g = (wg, wg, wg) Will be denoted by7 (&q). In most cases we must
estimateT (o) or T (&q) numerically by calculating (¢, n, 6, @) over a discrete set df,
n, 6 values in the cube-7 < &, n, 0 < 7 and take the maximum over these values. Thi
was done for two-dimensional analysis in [27].
For a system of equations, whé@his a matrix, the method is stable at somef T
is diagonalizable and the spectral radig¥) is no larger than 1. For the class of wave
propagation schemes considered, the amplification matrix is not proved to be diagonaliz:
For those problems we have considered, numerical studies indicale ltlaatthis property
in major parts of the wavenumber domain. For those wavenumbers where the matri
indicated to be nondiagonalizabliET"|| is computed for different values af. In these
cases||T"| stays nicely bounded, and the spectral radius is always less than unity. Be
on these observations, the wave propagation schemes is said to be stable farifiven

T (@) = maxr(T(,n,0,0)) =1,
&n.0

where maximumistakenfermr < &, 5,60 < m.Ingeneral, thisis only anecessary conditior
for stability in the system case, but we have not observed that it fails for our applicatiot

4.1. Scalar Advection

Consider the advection equation (4), wherev, andw are positive constants. The
directional Courant numbers are then

At At At
w1 =U—, wr=v— w3=w—.
AX Ay Az

As an example of this stability analysis, consider the donor-cell upwind method
Qisk = Qiik — @1(Qik — Qi-1.3k) — @2(Qisk — Q1 y—1k) — wa(Qiak — Qrak-1)
= Qiik — w1AxQiik — w2AyQik — w3A;Q) 3k,

whereAy, Ay, A, denote the upwind difference operators. This is the wave propagati
Method (1, 0, 0) from Section 2. Inserting the Fourier mode (63) into this method yie
TE n, 0, o).

TOO—1 w1 —e ) —w(l— e — wz(1— e '?).
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TABLE 1l
The Amplification Factor 7 (wy) versus the CFL Numberwy = w; = wy = ws
for the Scalar Problem

max , 4| T| for

[on T100 T110 Tlll T210 T211 T220 T221 T222 LW

0.1 1.00 1.00 1.00 1.06 1.05 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.24 1.18 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.54 1.32 1.00 1.00 1.00 1.03
0.4 1.40 1.00 1.00 1.96 1.45 1.00 1.00 1.00 1.17
0.5 2.00 1.00 1.00 2.50 1.50 1.00 1.50 1.00 1.57
0.6 2.60 1.72 1.00 3.16 1.43 1.06 2.02 1.00 2.21
0.7 3.20 2.68 1.00 3.94 1.26 1.37 2.33 1.00 3.01
0.8 3.80 3.88 1.00 4.84 1.11 2.00 2.33 1.00 3.97
0.9 4.40 5.32 1.00 5.86 1.02 3.92 1.92 1.00 5.08
1.0 5.00 7.00 1.00 7.00 1.00 7.00 1.00 1.00 6.32

1.01 5.06 7.18 1.06 7.12 1.12 7.37 1.14 1.12 6.45

Here and below the superscripts ®rand7 (o) refer to the labelsn;, my, mz) denoting
the method. This donor-cell method can be shown to be stable only when

w1+ w2+ w3 <1,

which is more restrictive than our desired bound (62). In particular, along the diagonal
find that

T (&q) = max(l, |1 — 6wal),

so that the method is only stable fog < 1/3.

In Table Il we present the values Gf(«q) found numerically for each method of the
type presented in Section 2, and also for the classical Lax—Wendroff method. The col
labeledT 19, for example, shows that the method is stablefpe= 0.3 but not forwg = 0.4,
since in the latter case the amplification factor is 1.40.

We can improve the stability properties of the upwind algorithm by moving up to Meth
(1, 1, 0), in which we introduce transverse propagation of the increment waves into adja
cells. The amplification factor is then

T = T10 4 (1 — e )1 — e + w131 — e (L —e'?)
+ wowz(1— e M) (1 — e, (66)

In the diagonal case we find that the amplification factor is maximized by tgkiag =
0 = mr, which results in

TH%@q) = max(1, |1 — 6wy + 1207

),

and hence the method is stable égr < 1/2 as indicated in Table .
By also introducing double transverse propagation, as discussed in Section 2.3.1
obtain Method (1, 1, 1). It is possible to writé"** in the compact form

TH = (1-w1(1-e)L—w(l—e )L - ws(l—e ). (67)
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It can easily be shown that''(w) = 1 for all » in the cube (62) and hence this method ha
optimal stability. (This is expected since Method (1, 1, 1) is the shift and average scher

Note that even though Method (1, 1, 1) is only first-order accurate, it includes appr
imations to the third derivative term,, coming from the double transverse propagatiol
(and apparent from the produstw,ws appearing in the expression fottl). We will see
for second-order methods that obtaining optimal stability requires including approxin
tions to certain fourth-order derivatives (obtained by the double transverse propagatio
correction waves in Method (2, 2, 2)).

4.2. Second-Order Methods

The simplest wave propagation method that is second-order accurate is Method (2, :
Takingm; = 2 includes correction waves modeling the second derivative tgrmeyy, and
g,z in the Taylor expansion. Taking, = 1 gives transverse propagation of the incremer
waves, which models the cross-derivative tegxs gy,, anday,. The amplification matrix
is

THO = THO4 %wl(l —o)(l-e")(1—€%)+ %wz(l —w)(l -1 -

1 . .
+503(1— @3)(1— e (1—-¢€). (68)

In the diagonal case we find
T2, 7, 7, @g) = 1+ 603, (69)

and hence this method is unstable for agy The method is stable in the special case wher
one of the velocities is zero, say= 0 (and hence the corresponding directional Courar
number is also zereyz = 0). In this case the problem reduces to a two-dimensional proble
and this method is optimally stable in two dimensions (this is what was called Method :
[27]). So Method (2, 1, 0) is stable on faces of the cube (62), e.g., férallw:, w,, 0) with
0 < w1, wp < 1, but nowhere in the interior as indicated in Table 11l and by the diagon:
Note that (69) gives the values in the table. This indicates that for this scheme the maxin
is taken for wavenumbers equalto

In a fully three-dimensional problem our experience with first-order methods indica
that good stability requires including the corner-coupling tegms, and hence we must
at least takenz = 1. The next simplest method includes transverse and double transve
propagation of the increment waves, along with correction waves in the normal direction,
is Method (2, 1, 1). The expression fof!! is given by (68) withT 10 replaced byT 1,
Unfortunately this scheme is still unconditionally unstable for a fully three-dimensior
problem, although the amplification factors are smaller than those for Method (2, 1,
From the table also note that the scheme has an isolated point of stahiify=at.0. For
this value the scheme happens to be exact.

Transverse propagation of the correction wave must also be used to obtain a stable se
order-accurate method for fully three-dimensional problems. This meansitha® and
perhaps alsonz = 2.
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Method (2, 2, 0) has amplification factor
1 . . _
T#0=TH04 Sorop(1 - e - Hd—e"HA-e)
1 i —ig —i
+ Ea)la)g(l —o)E* =Dl —-e"¥)1-e
1 . . _
+ 50021 = @)@ = (1 - e )L~ e’

1 . y o
+ —wow3z(l—wy)(€" -1 —-e'M(d—e")

2
+ %wlws(l —w3)(€? — (1 —e')(1—e)
+ %wzws(l — o) — D(d—e )1 ), (70)

According to Table Ill, this scheme is stable tay < 0.5, which is reasonable but still not
optimal.

In Method (2, 2, 1), the increment wave propagates as in Method (1, 1, 1). The amg
cation factor is given by (70) but witfi?1° replaced byT 2%, Like Method (2, 1, 0);T 21!
takes its maximum in the unstable regime for wavenumbers equhi this caseT 22!
(.7, 7, Bg) =1 — 180§ + 1640° and the method is stable fasy < (14 +/33)/16~
0.4215, in agreement with the table. Compared to Method (2, 2, 0), the stability reg
is slightly reduced, but the amplification factor outside the stable region is smaller anc
for Method (2, 1, 1), the scheme is exact éqr=1.0.

Finally, if the correction wave also propagates in a three-dimensional manner we ok
the full Method (2, 2, 2). The amplification factor for this method is

T =T %wla)ga)g(l —o)Ef —DA-eHdl-eN1-e)
o105~ )@~ DA - e (A e A -e™)
1 . B B B
— Ea)la)za)g(l —w) @ — DA —e"NHA—-e") L —e). (71)

According to Table 1lI, the wave propagation scheme is stablefot 1, which is the best
one can expect.

The results shown in Table 1l are for the scalar advection equation. We have also ¢
sidered linear systems of equations such as acoustics and the linearized Euler equ:
with a nonzero background velocity. The stability limits depend on the particular syst
for methods such as the Lax—Wendroff and methods (1, 1, 0) and (2, 2, 0), but with rou
the same limits as seen for advection. Methods (1, 1, 1) and (2, 2, 2) remain stable fc
Courant numbers up to 1 on the systems tested. A MATLAB script which computes th
amplification factors may be found on the Web page [20].

4.3. Other Second-Order Discretizations

In this section we compare the stability results found for the wave propagation algoritt
with that of the standard Lax—Wendroff method. We also consider what happens if
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centered approximations to second derivatives used in Lax—Wendroff, which forms the b
for the correction waves in our methods, are replaced by other standard approximations
as those used in the one-dimensional Beam—Warming or Fromm methods.

Consider a general method of the form

Qisk = Qiik — @1AxQi3k — @2AyQyk — w3AzQ 3k + E1 + E2. (72)
The termE; includes the approximations of the pure second-order derivatives in the Tay

series, whileE, models cross-derivative terms. Takilig = E, =0 gives the donor-cell
upwind method, while the standard Lax—Wendroff method has

1 1
EPV = —Ewl(l— ®1)(Ax Qi 41,3k — AxQirik) — sz(l— @2)(AyQii1k — AyQrik)

1
—ECUB(]-_CUS)(AZQIJ.K-H—AZQIJK)- (73)

EZLW = w1w2A§A§Q| IK + w1w3A§A§Q| IK + CUZ(USAEA;QI JK> (74)

where AYQ,;x denotes the centered differenc®(1 ik — Qi—1,3k)/2. The Lax—
Wendroff amplification factor is

1 : - 1 . . 1 . )
TW=1- Ewl(e” —e %) — sz(e'” —e') — 5@3(e'w —e'?)
1 2/AlE —i& 1 2/Al —i 1 2/ Ao —iw
+ Ewl(e -DA-e"")+ sz(en - DA-e"M+ Ew?,(e -DA-¢e"Y)
1 £ —iEN Al i 1 i£ —iE\ Ao —iw
+ Zwlwz(e —e ) e -e") + Zwlws(e —e °)ev—-e"")
1 in —iny/al® —iw
+ szws(e —e e —e").
Along the diagonal, Lax—Wendroff is stable fog < 0.1925.
One might attempt to improve stability by replacing the centered approximations
cross-derivative terms by upwind approximations, using
E)° = w102Ay A Qijk + w103A ;A Qijk + waw3AzAyQijk
in place of E5. This gives Method (2, 1, 0) which was seen above to be unconditiona
unstable. However, if we also repla&"’ by an upwind-biased approximation, stability

can be restored. One possibility is to use the fully upwind Beam—-Warming approximat
introduced in [46] (see [25]):

1 1
EPY = _Ewl(l — w1)(AxQijk — AxQi_1,jk) — sz(l — w2)(AyQijk — Ay Qi j_1k)

1
- §w3(1 — @3)(AzQijk — AzQij k-1)-

Another is to use centered differences suclA&®) ;« in place of the upwind difference
AxQik in EXY. This corresponds to Fromm’s method [12] in one dimension, so we c.
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this
EFI‘ 1 1 C C 1 1 [ c
1= _Zwl( — 1) (A Qijk — ALQi—1jk) — sz( — @2) (AYQijk — AJQij-1k)
1
- ZwS(l — w3) (A5Qijk — ASQijk-1)-

ReplacingEL" by one of these and usirfg,” give methods we label Method BW(2, 1, 0)
and Method Fr(2, 1, 0) for Beam—Warming and Fromm, respectively. One could then ad
transverse propagation of the correction terms and perhaps double transverse propa
as well, giving methods such as BW(2, 2, 2). Only minor changes have to be mad
the expressions for the amplification factdrét®, T2, 7220, T221 andT2%?, in order to
account for this change in the underlying approximation. For the BW-type approximati
the change is

replace (€5 —1)(1—e %) by (€f—1)@A—e)e s,

Similar changes have to be made for corresponding terms invalvarglo. Likewise, the
changes to be made for the inclusion of Fromm-type discretization are

replace (¢ —1(1—e™) by %(1—e—“f)(e‘5_e—‘f).

These modified methods are interesting to study since the effect of adding certain lim
is to give an upwind bias toward one of these methods. The full effect of adding a limi
is more complicated since the methods are then nonlinear and von Neumann analysis
not apply. Nonetheless, it may be reassuring to know that we are switching to a method
is also stable in its own right.

Table IV gives a summary of stability results along the diagonal for these modifi
methods. One significant result is that none of these methods is unconditionally unstak
the manner of Method LW(2, 1, 0) or LW(2, 1, 1). In general, the Fromm methods have

TABLE IV
The Amplification Factor 7 (wy) versus the CFL Numberwy = w; = wy = w3
for the Scalar Problem

max , 4| T|, Beam—Warming max,,|T|, Fromm

wy T210 T211 T220 T221 T222 T210 T211 T220 T221 T222

0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.4 1.00 1.43 1.38 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.50 2.50 1.50 1.00 1.00 1.00 1.00 1.00 1.00
0.6 1.00 1.45 3.74 2.01 1.00 1.72 1.00 1.72 1.01 1.00
0.7 1.42 1.32 4.95 2.20 1.00 2.68 1.00 2.68 1.03 1.00
0.8 2.92 1.18 5.99 1.90 1.00 3.88 1.00 3.88 1.02 1.00
0.9 4.78 1.05 6.72 1.19 1.00 5.32 1.00 5.32 1.02 1.00
1.0 7.00 1.00 7.00 1.00 1.00 7.00 1.00 7.00 1.00 1.00
1.01 7.24 1.08 7.00 1.25 1.00 7.18 1.06 7.18 111 1.06
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largest stability regions, though in the case of Method (2, 2, 2), all three approaches:
optimally stable methods.

4.4. Limiter Influence and Wavenumber Dependency

The numerical example in Section 3.2 was also studied in [19]. The method used
(2, 1, 1) at a Courant number of about 0.9, and the computation did not suffer from
instability problems. From other numerical experiments we have observed that the un
ditionally unstable methods (2, 1, 0) and (2, 1, 1) do not behave as badly as the discus
above may indicate. This is especially true for Method (2, 1, 1). But even Method (2,
0) may produce nice results when applied to nonlinear probigtimsiters are used. This
indicates that the instability is strongest for large wavenumbers. Limiters are assume
be most effective in this range. In this section we reconsider the two test problems from
previous section and examine how the amplification factor depends on wavenumbers
to some extent on limiters.

To simplify the discussion, we consider the case of equal wavenumbetse.,= 0. In
Fig. 10, the absolute value of the amplification factor versus the wavenumber for the sc
problem is depicted for three different values of the Courant nuraeiThe analytical
expressions derived in the previous section are used. For all schfimes,symmetric
aboutt =0, and in the figures only & & < & is given.

As expected, the stable methods (1, 1, 1) and (2, 2, 2) are uniformly bounded by ¢
and the former scheme is more dissipative than the latter. When it comes to the unsi
schemes, Method (2, 1, 0) is more unstable than Method (2, 1, 1) for nearly all wavenum
and Courant numbers.

These results may be utilized to find initial conditions that trigger instabilities in t
schemes. Consider the initial condition

Qo(X, Y, 2) = sin(2rnX + 2rny + 27 n2), (75)

wherenis a positive integer. Assume that the computational domainis f0[@] 1] x [0, 1],
thatAx = Ay = Az, and that periodic boundary conditions are used on all boundaries. T
wavelength in the Fourier mode (63) ig 2x /£, and in (75) the wavelength ig fi. Hence,

27n
TN
whereN is the number of cells in each coordinate direction. Since the shortest waveler
obtainable on the grid is&x, acceptable values forare 1, 2, ..., N/2, assuming thal

is even.
An estimate for the amplification factor is obtain by considering the ratio
ma)qélJKVT]?(le_IJK'- (76)

1JK

An average value of this ratio for a number of steps is used. Due to roundoff errors, a ¢
putation may trigger instabilities, even though the wavenumbers used should give stab
In such cases, the average is estimated based on “stable steps.”

In plots on the right side of Fig. 10, the estimated amplification factor is depicted w
“0” symbols for Method (2, 1, 1). In these computatid¥is= 40 andn=>5, 10, 15, 20 are
used. The symbols lie very close to the curves as expected.
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0 05 1 15 2 25 3 35 o 05 1 15 2 28 3 35

FIG. 10. The absolute value of the amplification factor versus the wavenugnbern = 6 for the scalar
advection problem. The Courant numbers are: (top oy 0.2, (middle row)wy = 0.5, (bottom row)vy =0.9.
Plots in the left column show results for four different methods, 111, 210, 211, and 222. The right column sk
the effect of limiters for the case of Method (2, 1, 1) (on a different scale). The cifo)esofrespond to numerical
experiments, while the.-marks show the same numerical experiments when the MC limiter is incorporated.

Itis now possible to study the effect of limiters on stability. The computations are redo
but now with the MC limiter turned on. The estimates for the ratio (76) are marked us
x-marks. The overall picture is that the limiters may prevent the solution from goi
unstable for all Courant numbers. Note that wimea 20, yielding a wavelength of &x,
the gradient in the numerical solution changes sign from one cell to the other. In this c
the limiter becomes zero, the high-order terms are switched off and the scheme is equiv
to Method (1, 1, 1).
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Limiters are constructed to reduce oscillations near discontinuities. They are not inter
to increase the stability range of the scheme. Nevertheless, it seems that the use of lin
has a positive effect on Method (2, 1, 1). Computations similar to those reported ab
show that this also is the case to some extent for Method (2, 1, 0). Note, however, that t
is no reason to use Method (2, 1, 1), since it involves nearly the same amount of wor
the stable Method (2, 2, 2). Method (2, 1, 0) should probably not be trusted in general, ¢
though it produces good looking results on certain problems.

5. CONCLUSIONS

In this paper, a class of three-dimensional wave propagation methods for conserve
laws is constructed. By using proper wave propagation, a method which is stable for Cou
number up to 1 is obtained. Simpler versions of the method appear to be stable in pra
due to the effects of the nonlinear limiter function even though the unlimited versic
are unstable for linear problems. This is analyzed in Section 4. In practice, we recomn
Method (2, 2, 2) as the most robust and stable of the second-order multidimensional mett

This three-dimensional scheme generalizes the two-dimensional approach for sys
in [28] and the 3D scheme for scalar advection in [27]. The wave propagation metho
implemented in Fortran, and is included in the software packag#PACK, freely available
on the Web.

The methods have been applied to the Euler equations as a sample application. Thou
examples used in this paper are written in conservative form, the methods, as impleme
in CLAWPACK, handle the more general class of hyperbolic equations (3) as discussed in |

To efficiently solve realistic problems in three space dimensions, adaptive mesh
finement is often a necessity. The algorithms described here are being implemente
the BEARCLAW package (Boundary Embedded Adaptive Refinement) being developed
Sorin Mitran at the University of Washington. This follows thBRCLAW adaptive mesh
refinement procedures developed with Marsha Berger, as described in two space di
sions in [4], but is a tree-based Fortran-90 package which will ultimately be augmen
by boundary-embedded Cartesian grid techniques for handling general geometries
large three-dimensional problems it may also be necessary to use parallel processing
MPI directives are easily incorporated in tRBARCLAW code. Another software package
based on these algorithmsZBLCLAW, being developed by Turkiyyah and Wu [47] using
the ZPL parallel programming language of Snyder [40]. Pointers to these other packa
may be found on theLAWPACK, webpage [29]. Supplementary material for this paper ar
animations of some of the results presented may be found at [20].
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